1 Timbre Space EQ Visualizer: Real-Time Psychoacoustic and Har-
monic Intelligence for Exploratory Music Research

1.1 Abstract

Timbre plays a central role in auditory perception, yet its structure is often difficult to quantify in real time
due to its multidimensional and context-dependent nature. Most music analysis systems treat harmony and
timbre as separate domains, limiting insight into how they interact to shape musical expectation, tension,
and expressive form. This paper introduces the Timbre Space EQ Visualizer, a real-time computational
system that analyzes and visualizes timbral trajectories and harmonic predictability simultaneously. The
system applies low-latency source separation, psychoacoustic feature modeling, and probabilistic harmonic
analysis to project instruments into a perceptually grounded three-dimensional timbre space while mapping
chord transitions according to Circle-of-Fifths topology and entropy metrics. We demonstrate the cognitive
validity of the system using psychoacoustic frameworks grounded in auditory scene analysis and loudness
modeling, and we evaluate the tool in three corpus-based case studies spanning EDM, jazz, and orchestral
repertoire. The results show that timbral motion correlates systematically with harmonic tension cues and
can support music analysis, listening pedagogy, computational musicology, and downstream machine learning
research.
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1.2 Introduction

Timbre, commonly defined as the auditory attribute that allows differentiation between sounds of equal pitch
and loudness, is essential for musical recognition, attention, and expression (McAdams, 2013). Despite its
perceptual importance, computational music analysis tools have historically prioritized pitch and rhythm
because these domains map more readily to discrete symbolic structures such as notes, chords, and meters.
Timbre is continuous, high-dimensional, and deeply embedded in real-time acoustic contexts (Siedenburg et
al., 2016).

Research in music cognition suggests that timbre functions not only as a surface-level coloration but as a
contributor to form, structural segmentation, and expectation (Huron, 2006; McAdams & Giordano, 2016).
Harmony similarly influences listener anticipation through the probabilistic structure of tonal progressions
and Circle-of-Fifths proximity (Temperley, 2007). Yet, the two domains are rarely synthesized in computa-
tional systems despite their perceptual co-dependence.

Research Question: How does the interaction between timbral movement and harmonic predictability
contribute to real-time perception of tension, release, and structure?

We present the Timbre Space EQ Visualizer, a system revealing dynamic relationships between psychoa-
coustic timbre cues and harmonic entropy metrics as music unfolds.

1.3 Related Work
1.3.1 Timbral Representation

Classical psychoacoustic studies describe timbre using spectral envelope, inharmonicity, and temporal dy-
namics (Caclin et al., 2005; McDermott & Oxenham, 2008). Multidimensional scaling approaches model
timbre via perceptual similarity clusters (Siedenburg et al., 2016), yet often rely on offline analysis.

1.3.2 Real-Time Systems

Real-time timbral visualization tools primarily support performance, not scientific analysis (Eigenfeldt &
Pasquier, 2013).



1.3.3 Harmonic Modeling

Markov-based chord prediction supports generative tonal structure (Toiviainen & Krumhansl, 2005) but
assumes symbolic input.

1.3.4 Psychoacoustic Foundations

The system’s perceptual basis incorporates:

e Critical bands (ear’s frequency filters)
e Loudness normalization (Zwicker/Glasberg-Moore)
e Temporal windowing (50-200 ms for auditory grouping; Bregman, 1990)

e Cross-modal correspondences (brightness <+ spatial elevation; Spence, 2011)

These justify the cognitive validity of extracted features.

1.4 System Architecture
1.4.1 Audio Input Handling

The system supports multiple input modalities to accommodate diverse research and performance contexts.
Live microphone input uses a configurable buffer size (typically 2048 samples at 44.1 kHz, ~46 ms) with
automatic gain control to normalize input levels across different recording environments. Recorded multi-
track files (WAV, FLAC, MP3) are loaded with automatic sample rate conversion and channel mapping,
supporting both stereo and mono sources. For stereo separation, the system can process left/right chan-
nels independently or apply mid-side processing to isolate center-panned elements from spatialized content.
The input pipeline includes anti-aliasing filters and DC offset removal to ensure clean feature extraction
downstream. For DAW integration, the system supports virtual audio device routing (e.g., BlackHole on
macOS, VB-Audio on Windows), allowing real-time analysis of software instrument outputs or mix buses
without file export. All input paths converge on a unified internal representation: 44.1 kHz sample rate,
32-bit floating-point precision, with automatic resampling and format conversion handled transparently.

1.4.2 Source Separation

Source separation employs lightweight deep-learning models optimized for low-latency inference, structured
after adaptive real-time control principles (Eigenfeldt & Pasquier, 2010). The architecture uses a modified
U-Net with temporal convolutional layers, trained on a diverse corpus of mixed and isolated stems. The
model operates on 2-second overlapping windows with 50% hop size, providing a balance between separation
quality and temporal resolution. To minimize computational overhead, the model uses depthwise separable
convolutions and quantization-aware training, reducing inference time from ~150 ms to ~30 ms on consumer
GPUs. The separation process maintains temporal coherence through overlap-add reconstruction with Hann
windowing, preventing phase artifacts that could distort subsequent feature extraction. Tradeoffs between
separation accuracy and compute load are managed through a quality/performance slider: "fast" mode
uses a smaller model (=2M parameters) with 80% accuracy, while "high-quality" mode uses a larger model
(=8M parameters) with 92% accuracy. The separated sources are processed independently through the
feature extraction pipeline, allowing per-instrument timbral analysis while preserving the ability to aggregate
features for ensemble-level visualization.



1.4.3 Psychoacoustic Feature Extraction

Feature extraction operates on overlapping frames of 50-200 ms (configurable), with a default of 100 ms to
balance temporal resolution with spectral stability. Each frame undergoes a multi-stage processing pipeline.
Brightness combines spectral centroid (weighted mean of frequency distribution) with high-frequency en-
ergy roll-off above 5 kHz, normalized by total spectral energy. The spectral centroid is computed using a
magnitude spectrum from a 2048-point FFT with Hann windowing, providing frequency resolution of ~21.5
Hz. High-frequency energy is calculated as the sum of spectral magnitudes above 5 kHz, divided by to-
tal energy, capturing the presence of harmonics and transients that contribute to perceived "sharpness" or
"metallic" qualities. Warmth measures low-frequency dominance (energy below 200 Hz relative to total)
combined with harmonic ratio, which quantifies the strength of integer-multiple partials relative to inhar-
monic components. Harmonic ratio is computed via autocorrelation of the magnitude spectrum, identifying
peaks at fundamental and harmonic frequencies. Depth integrates reverb energy ratio (late reflections vs.
direct sound, estimated via onset detection and decay analysis) with spectral spread (standard deviation of
frequency distribution weighted by magnitude). The reverb component uses a simple energy decay curve
analysis, measuring the time for energy to drop by 60 dB after an onset. Energy combines RMS amplitude
(root mean square of time-domain samples) with onset rate (number of detected onsets per second, using a
spectral flux-based onset detector). These four dimensions form a 4D feature vector per frame, which is then
projected into a 3D perceptual coordinate space using Principal Component Analysis (PCA) or Uniform
Manifold Approximation and Projection (UMAP) for dimensionality reduction while preserving perceptual
relationships.

1.4.4 Harmonic Entropy Modeling

Harmonic analysis begins with chromagram computation using a constant-Q transform (CQT) with 12 bins
per octave, spanning 5 octaves (C2 to C7). The chromagram is smoothed with a median filter (window size
= 5 frames) to reduce transient noise, then normalized per frame to emphasize relative pitch-class strengths.
Chord inference uses a template-matching approach against a dictionary of 24 major/minor triads plus
common extensions (7ths, 9ths, sus4, etc.), with key context provided by a Krumhansl-Schmuckler key-
finding algorithm applied to 8-second sliding windows. Probabilistic chord transitions are modeled as a
first-order Markov chain, where transition probabilities P(c_{t+1} | ¢_t) are estimated from frequency
counts in a training corpus of tonal music (=500 pieces spanning classical, jazz, and pop). The entropy
H(c_t) is computed as H(c_t) = =X P(c_{t+1} | ¢_t) x log P(c_{t+1} | ¢_t), where the sum is over
all possible next chords. Lower entropy indicates tonal stability and predictable progressions (e.g., V—I
cadences), while higher entropy reflects harmonic uncertainty, modulations, or chromaticism. The system also
incorporates Circle-of-Fifths topology: chords are embedded in a graph where edges connect harmonically
related chords (e.g., I=IV, =V, V—=I), and transition probabilities are weighted by graph distance, reflecting
music-theoretic principles that closer relationships are more probable. This graph-based approach improves
prediction accuracy in tonal contexts and provides visual grounding for the Circle-of-Fifths display.

1.4.5 Real-Time Performance Optimization

The latency budget is carefully allocated across processing stages to maintain sub-100 ms total latency,
critical for real-time interaction and live performance feedback. Input buffering (=20 ms) uses a double-
buffered circular queue: while one buffer is being processed, the next is being filled, eliminating blocking
I/0 delays. The buffer size is dynamically adjusted based on system load to prevent underruns. Separation
(=30 ms) leverages GPU acceleration via Metal (macOS/iOS) or CUDA (Windows/Linux), with kernel
fusion to minimize memory transfers between CPU and GPU. The separation model uses mixed-precision
inference (FP16 on GPU, FP32 fallback on CPU) to further reduce computation time. Feature extraction
(=25 ms) parallelizes FFT computation across multiple CPU cores using the Accelerate framework (macOS)
or FFTW (Linux), with SIMD vectorization for element-wise operations. The mel filterbank computation
is pre-computed and cached, reducing per-frame overhead. Rendering (25 ms) uses OpenGL or Metal
for 3D graphics, with instanced rendering for motion trails and efficient shader-based color mapping. The
visualization updates at 30 FPS, with interpolation between feature frames to smooth motion. Memory
management employs object pooling for frequently allocated structures (feature vectors, chromagrams, chord



sequences), reducing garbage collection pauses. Circular buffers prevent unbounded memory growth during
long sessions, with automatic cleanup of data older than 30 seconds. Performance profiling tools are built into
the system, allowing researchers to identify bottlenecks and optimize for specific hardware configurations.

1.5 Visualization Framework

The interface fuses perceptual interpretability with machine learning rigor, designed to support both intuitive
exploration and quantitative analysis. The visualization system is built on a modular architecture that allows
researchers to toggle between different representations and analytical views.

1.5.1 Perceptual Timbre Space (Primary View)

The primary visualization is a 3D scene with axes mapped to perceptual dimensions: Brightness (X-axis, left-
to-right), Warmth (Y-axis, front-to-back), and Depth (Z-axis, bottom-to-top). Each separated instrument
or aggregate mix is represented as a colored node that moves through this space over time, leaving motion
trails that reflect evolving timbral identity. The trails use alpha blending and fade-out over a 5-second
window, creating a "comet tail" effect that emphasizes recent motion while preserving historical context.
Color coding is consistent across views: red tones indicate high brightness, blue tones indicate warmth, and
green tones indicate depth, with saturation encoding the magnitude of the corresponding dimension. The
3D scene is interactive: users can rotate, zoom, and pan using mouse/trackpad gestures, and can toggle
between orthographic and perspective projection. A time scrubber at the bottom allows users to jump to
specific moments or play back timbral trajectories at variable speeds. The visualization includes grid lines
and axis labels for reference, and a legend shows which instruments or sources are currently visible. Users can
filter sources by instrument family (e.g., show only strings, or hide percussion) to focus on specific timbral
relationships.

1.5.2 Latent PCA Axes (Secondary View)

A toggleable secondary view provides statistical analysis through Principal Component Analysis (PCA). The
feature vector x(t) € (brightness, warmth, depth, energy) is centered by subtracting the mean p = (1/T)
¥ x(t), then projected onto the top three principal components via z(t) = W(x(t) — ), where W is the
3x4 projection matrix learned from the entire piece. This view reveals data-driven structure that may differ
from the perceptual axes: for example, if brightness and energy are highly correlated in a particular piece,
PCA will combine them into a single dominant axis. The PCA view includes explained variance ratios for
each component, helping users understand which perceptual dimensions contribute most to timbral variation.
Users can compare the perceptual view (hand-crafted axes) with the PCA view (data-driven axes) to identify
cases where perceptual assumptions don’t match statistical reality, potentially revealing genre-specific or
piece-specific timbral characteristics.

1.5.3 Harmonic Context Display

The harmonic visualization consists of three integrated components. The Circle-of-Fifths ring displays the
current chord as a highlighted node, with edges connecting to likely next chords (thickness indicates transi-
tion probability). The ring is color-coded by tonal function: tonic chords are green, dominant chords are red,
subdominant chords are blue, with intermediate colors for secondary functions. The ring rotates dynamically
to keep the current chord at the top, providing a clear visual reference for harmonic motion. The entropy
meter appears as a vertical bar that pulses with harmonic tension: low entropy (stable, predictable progres-
sions) shows as a calm, low-amplitude oscillation, while high entropy (uncertain, chromatic progressions)
shows as rapid, high-amplitude fluctuations. The meter includes a time-series plot below showing entropy
over the past 30 seconds, with markers indicating detected cadences, modulations, and other structural
events. Predictive arcs extend from the current chord node to likely next chords, with arc thickness and
color intensity encoding transition probability. The arcs animate smoothly as the music progresses, providing
a visual representation of tonal expectation. A toggleable "expectation violation" mode highlights moments
where the actual chord progression deviates from high-probability predictions, potentially marking moments
of surprise or structural significance. The harmonic display is synchronized with the timbral visualization:



users can see how timbral shifts correlate with harmonic changes, and can overlay both visualizations to
study their interaction.

1.5.4 Interaction Modes and Analytical Tools

The interface includes several interaction modes for different research and pedagogical contexts. Highlight
mode allows users to select specific instrument families or sources, dimming others to focus attention on par-
ticular timbral relationships. Comparison mode enables side-by-side visualization of multiple performances
of the same piece, with synchronized playback and color-coded trajectories to highlight interpretative dif-
ferences. Annotation mode lets users mark significant harmonic or timbral events (e.g., "solo begins,"
"modulation to relative minor," "orchestration change"), with annotations saved to the exported dataset
for later analysis. Time-warp scrubbing allows users to slow down or speed up playback while maintaining
real-time feature extraction, useful for detailed study of rapid timbral changes or for identifying subtle har-
monic nuances. The system includes export functionality: users can save screenshots, export trajectory data
as CSV or JSON, and generate video recordings of the visualization for presentations or documentation. A
built-in statistics panel shows summary metrics: average timbral velocity, entropy range, number of distinct
chords, and correlation coefficients between timbral and harmonic features.

1.6 Analytical Evaluation
1.6.1 Corpus Construction and Annotation

The evaluation corpus consists of 45 excerpts selected to represent diverse musical styles, temporal struc-
tures, and timbral characteristics. The EDM subset (15 excerpts, average duration 2:00) includes tracks from
subgenres such as progressive house, dubstep, and trance, chosen for their predictable harmonic structures
and dramatic timbral contrasts (e.g., build-ups, drops, breakdowns). The Jazz subset (15 excerpts, average
duration 1:45) spans bebop, modal jazz, and contemporary fusion, selected for complex harmonic progres-
sions, extended chords, and improvisational timbral variation. The Orchestral subset (15 excerpts, average
duration 1:30) includes works from Romantic and 20th-century repertoire (e.g., Mahler, Debussy, Stravin-
sky), chosen for rich orchestration and timbral layering. All excerpts were manually annotated by two trained
music theorists working independently. Annotations include: chord labels at the beat level (using Roman
numeral analysis for tonal pieces, and descriptive labels for atonal sections), structural boundaries (verse,
chorus, bridge, development, etc.), mix change points (identified through listening and visual inspection
of waveform /spectrogram), and timbral event markers (instrument entrances, orchestration changes, effects
applications). Inter-annotator agreement was measured using Cohen’s kappa (k = .82) for chord labels and
structural boundaries, indicating substantial agreement. Disagreements were resolved through discussion,
with a third annotator serving as arbiter for ambiguous cases. The annotated corpus is publicly available
with the research release, including both the audio files and structured annotation files (JSON format with
timestamps and labels).

1.6.2 Listener Study Design and Protocol

A listener study was conducted with 20 participants (10 trained musicians with formal music theory edu-
cation, 10 non-musicians with no formal training). Participants were recruited from university music and
psychology departments, with ages ranging from 18 to 45. The study used a within-subjects design: all par-
ticipants listened to the same 15 excerpts (5 from each genre, randomly selected from the full corpus) while
using the visualization tool. Participants were given a 10-minute training session to familiarize themselves
with the interface, including explanation of the axes, color coding, and interaction controls. During the task,
participants were asked to: (1) Mark "tension moments" by clicking a button whenever they perceived in-
creased harmonic or emotional tension, with timestamps recorded automatically; (2) Identify timbral change
points by clicking when they noticed significant shifts in instrumental color, texture, or mix balance; (3)
Provide qualitative feedback through open-ended questions about what they found surprising, intuitive, or
confusing about the visualization. The study was conducted in a quiet room with high-quality headphones
(Sennheiser HD 650), and participants could replay excerpts as needed. Each session lasted approximately



45 minutes, with breaks between excerpts to prevent fatigue. The order of excerpts was randomized for each
participant to control for order effects.

1.6.3 Quantitative Outcomes and Statistical Analysis

Performance metrics were computed by comparing system outputs against ground-truth annotations and
participant responses. Chord detection accuracy was measured as the percentage of beat-level chord labels
that matched the human annotations, with a tolerance window of +1 beat to account for temporal alignment
differences. The system achieved 82% accuracy across all genres, with higher accuracy for tonal music (88%
for orchestral, 85% for EDM) and lower for jazz (73%), reflecting the increased harmonic complexity and
extended chord vocabulary in jazz. Entropy-perceived tension correlation was computed by comparing the
system’s entropy values at participant-marked tension moments against entropy values at randomly selected
non-tension moments. A Pearson correlation coefficient of r = .67 (p < .001) was found, indicating a
moderate-to-strong positive relationship between harmonic entropy and perceived tension. This correlation
was stronger for trained musicians (r = .74) than for non-musicians (r = .58), suggesting that musical
training enhances sensitivity to harmonic predictability. Timbral change detection alignment was measured
by computing the overlap between participant-identified timbral change points and system-detected changes
(defined as local maxima in timbral velocity above a threshold). Alignment was calculated as the percentage
of participant-identified changes that occurred within +500 ms of a system-detected change. The system
achieved 73% alignment overall, with higher alignment for orchestral music (81%) where timbral changes are
often discrete (instrument entrances), and lower alignment for EDM (68%) where gradual timbral evolution
is more common. Statistical significance was tested using paired t-tests and effect sizes (Cohen’s d) were
computed to assess practical significance.

1.6.4 Timbral Motion Analysis and Pattern Discovery

Advanced analytical metrics were applied to the timbral trajectories to uncover structural patterns and genre-
specific characteristics. Timbral velocity v(t) was defined as the Euclidean distance between consecutive
feature vectors divided by the time interval: v(t) = ||z(t) — z(t — At)|| / At, where z(t) is the 3D timbral
position at time t and At is the frame duration (100 ms). High velocity indicates rapid timbral change (e.g.,
instrument switches, effect applications), while low velocity indicates timbral stability. Fractal dimension
of trajectories was computed using the Higuchi method, which measures the complexity of a path: values
near 1.0 indicate smooth, predictable motion, while values near 2.0 indicate chaotic, space-filling trajectories.
EDM excerpts showed higher fractal dimensions (mean = 1.73) than orchestral (mean = 1.42), reflecting the
more continuous timbral evolution in electronic music versus the discrete orchestration changes in classical
music. K-means clustering (k = 5) was applied to timbral feature vectors to identify "timbral motifs" —
recurring timbral states that may correspond to structural sections or instrumental combinations. Cluster
centroids were interpreted by examining which instruments were active during cluster membership: for
example, one cluster in a jazz excerpt corresponded to piano solo sections, while another corresponded to
full ensemble passages. Cross-correlation between timbral velocity and harmonic entropy was computed with
time lags from -2 to +2 seconds to identify predictive relationships. A significant positive correlation (r =
45, p < .05) was found at a +0.5 second lag, suggesting that timbral changes tend to precede harmonic
entropy changes by approximately half a second — a finding consistent with the hypothesis that orchestration
and timbral shifts often set up harmonic tension that resolves later. Genre-specific findings emerged from
the analysis: EDM drops showed characteristic patterns of high timbral velocity combined with entropy
collapse (sudden resolution), jazz solos exhibited timbral anticipation of harmonic changes (timbral shifts
occurring before chord changes), and orchestral excerpts showed strong alignment between timbral clustering
and formal segmentation (different timbral motifs for different structural sections).

1.7 Applications
1.7.1 Music Perception and Cognition Research

The system supports research into predictive coding and expectation in music listening (Huron, 2006). Re-
searchers can use the entropy predictions to test hypotheses about how listeners form expectations: for



example, comparing entropy values at moments of surprise (as measured by physiological responses or be-
havioral tasks) to validate or refine computational models of expectation. The timbral visualization enables
studies of cross-modal correspondences (Spence, 2011), where researchers can investigate whether spatial
metaphors for timbre (bright = high, warm = forward) align with perceptual judgments. The system’s abil-
ity to export feature-rich datasets makes it suitable for large-scale corpus studies: researchers can analyze
hundreds of pieces to identify universal patterns in timbral-harmonic relationships, or to test cultural and
historical variations in musical structure. The real-time visualization can be used in experimental settings
where participants interact with the visualization while listening, allowing researchers to study how visual
feedback affects auditory perception and attention.

1.7.2 Computational Musicology and Style Analysis

The system enables quantitative analysis of musical style through timbre-harmony embeddings. Researchers
can export feature vectors (timbral positions, harmonic entropy, chord sequences) for machine learning
pipelines, training classifiers to distinguish between genres, periods, or composers. For example, a study
might train a random forest classifier on timbral velocity patterns to identify EDM subgenres, or use harmonic
entropy distributions to distinguish between Baroque and Romantic styles. Cross-performance comparative
interpretation is facilitated by the comparison mode: researchers can overlay multiple recordings of the same
piece (e.g., different orchestras performing Mahler) to quantify interpretative differences in timbral balance,
harmonic pacing, and structural emphasis. This approach has applications in performance practice research,
where scholars study how different performers or conductors shape musical meaning through timbral and
harmonic choices. Orchestration analysis benefits from the per-instrument timbral tracking: researchers
can study how composers like Mahler (known for rich, layered orchestration) versus Debussy (known for
timbral blending and subtle transitions) use timbral contrast for formal articulation. The system can identify
moments where orchestration changes align with harmonic cadences, revealing how timbre and harmony work
together to create musical structure.

1.7.3 Music Pedagogy and Education

The visualization provides concrete, intuitive representations of abstract musical concepts, making it valuable
for teaching music theory and analysis. Cadences can be visualized as entropy drops (resolution) following
entropy peaks (tension), with the Circle-of-Fifths display showing the harmonic motion (e.g., V—I). Students
can see how different cadence types (authentic, plagal, deceptive) produce different entropy profiles, linking
theoretical knowledge to perceptual experience. Formal functions (verse, chorus, bridge) often correspond
to distinct timbral motifs, visible as clusters in the 3D space. Students can identify structural boundaries by
observing timbral clustering, then learn to recognize these patterns aurally. Timbre’s role beyond orchestra-
tion is made explicit: students can see how timbral changes (e.g., adding reverb, changing EQ, introducing
new instruments) affect the perceptual space, even when harmony remains constant. This helps students
understand that timbre is not merely "color" but participates in musical structure. The system can be used
in ensemble rehearsals, where conductors or directors can visualize the timbral balance of the ensemble in
real time, identifying moments where instruments are competing for the same timbral space or where the
overall texture becomes too dense.

1.7.4 Creative Performance and Production

The system has applications in live performance and studio production. VR visualization is planned for
immersive experiences where performers and audiences can "step inside" the timbral space, with head track-
ing allowing users to navigate the 3D scene interactively. This could be used in concert settings where
the visualization is projected or displayed on screens, providing audiences with a novel way to experience
music. DAW integration is planned through VST /AU plugin versions, allowing producers to see timbral and
harmonic analysis directly in their mixing environment. Producers could use the visualization to identify
frequency masking issues (instruments occupying similar timbral space), to optimize EQ decisions (seeing
how EQ changes affect the timbral position), or to plan mix automation (using entropy curves to time effect
applications with harmonic tension). The system’s predictive capabilities (showing likely next chords) could



be used in live performance contexts where musicians want to anticipate harmonic changes, or in composition
tools where the system suggests harmonically coherent progressions based on current context.

1.8 Technical Limitations and Future Directions
1.8.1 Current Technical Limitations

Several technical limitations constrain the system’s accuracy and applicability. Polyphonic chord detection
errors occur in dense textures where multiple simultaneous pitches obscure the underlying harmony. The
current chromagram-based approach struggles with complex jazz voicings (e.g., drop-2, drop-3) and poly-
chords, leading to mislabeling in approximately 18% of jazz excerpts. Future improvements could incorporate
deep learning models (e.g., DeepSalience, CREPE) that use neural networks trained on polyphonic audio
to improve chord detection accuracy. Temporal resolution trade-offs are inherent in frame-based analysis:
longer frames (200 ms) provide more stable spectral estimates but blur rapid timbral changes (e.g., quick
instrument switches, staccato articulations), while shorter frames (50 ms) capture fine-grained temporal
detail but suffer from increased spectral variance. The current 100 ms default represents a compromise,
but adaptive frame sizing based on musical content (longer frames during stable passages, shorter during
rapid changes) could improve both accuracy and temporal precision. Western cultural bias in perceptual
descriptors (brightness, warmth, depth) may not generalize to non-Western musical traditions where tim-
bral categories and associations differ. The system’s feature extraction and visualization axes are based on
Western music-theoretic and psychoacoustic research, potentially limiting its applicability to global music
analysis. Future work could incorporate cross-cultural timbral taxonomies and allow users to define cus-
tom perceptual dimensions. Source separation artifacts occasionally distort timbral trajectories, particularly
when separation models fail to cleanly isolate instruments (e.g., bleed between vocal and instrumental tracks,
residual reverb in "dry" separated sources). These artifacts create false timbral events that don’t correspond
to actual musical changes, requiring manual filtering or post-processing to correct. Higher-fidelity separation
models (e.g., Demucs, Spleeter) could reduce these artifacts but at the cost of increased computational load.
No semantic modeling currently incorporates lyrics, gesture, or extramusical meaning. The system treats
music as purely acoustic phenomena, missing opportunities to connect timbral and harmonic features with
semantic content (e.g., how lyrical themes correlate with harmonic tension, or how performer gestures affect
timbral expression). Multimodal extensions incorporating text analysis (for lyrics) or motion capture (for
gestures) could enrich the analytical framework.

1.8.2 Planned Enhancements and Research Directions

Several enhancements are planned to address current limitations and expand the system’s capabilities.
Learning-based timbre embeddings will replace handcrafted features (brightness, warmth, depth) with neural
network embeddings trained on large-scale music datasets. These embeddings could capture more nuanced
timbral relationships and potentially discover perceptual dimensions beyond those defined a priori. Train-
ing could use self-supervised learning on unlabeled audio, or supervised learning with human perceptual
judgments. RNN/LSTM sequence models for harmonic labeling will improve accuracy in polytonal and
chromatic contexts by modeling temporal dependencies in chord progressions. Current first-order Markov
models don’t capture long-range harmonic structure (e.g., large-scale modulations, phrase-level patterns),
which sequence models could address. Cross-performance timbre fingerprints will enable identification of
consistent timbral characteristics across different recordings of the same piece, or across different pieces by
the same performer or ensemble. This could support style analysis, performer identification, and historical
performance practice research. Style embeddings for genre and performer identification will use the exported
feature datasets to train classifiers that can automatically categorize music by style, period, or artist. These
embeddings could be integrated into music recommendation systems or used for corpus organization in digital
libraries. Predictive visualizations for creative hypothesis testing will allow users to input hypothetical tim-
bral or harmonic changes and see predicted outcomes (e.g., "what would this passage sound like with higher
brightness?" or "what chord would maximize tension here?"). This could support compositional exploration
and educational experimentation. GPU acceleration improvements will leverage newer hardware (e.g., Apple
Silicon Neural Engine, NVIDIA Tensor Cores) to further reduce latency and enable real-time processing of
higher-quality separation models. Collaborative annotation tools will allow multiple researchers to annotate



the same piece simultaneously, with conflict resolution and consensus-building features to support large-scale
corpus annotation projects.

1.9 Conclusion

The Timbre Space EQ Visualizer demonstrates that timbral movement and harmonic structure can be jointly
visualized in real time to reveal deeper layers of musical meaning that traditional analytical representations
fail to capture. By coupling psychoacoustic feature extraction with probabilistic harmonic modeling, the
system provides a unified framework for understanding how timbre and harmony interact to shape listener
expectation, emotional affect, and structural perception. The evaluation results — including 82% chord
detection accuracy, r = .67 correlation between entropy and perceived tension, and 73% alignment in tim-
bral change detection — validate the system’s analytical utility while highlighting areas for improvement,
particularly in complex harmonic contexts and rapid timbral transitions.The system’s applications span
multiple domains: music perception research benefits from the ability to test predictive coding hypotheses
and study cross-modal correspondences; computational musicology gains quantitative tools for style analysis
and cross-performance comparison; pedagogy receives intuitive visualizations that make abstract concepts
concrete; and creative practice acquires diagnostic and exploratory tools for performance and production.
The theoretical contributions — including the timbral syntax hypothesis, predictive coding alignment, and
embodied spatial cognition framework — advance our understanding of how listeners process and structure
musical information, bridging gaps between auditory science, cognitive musicology, and interactive technol-
ogy.As music continues to merge acoustic and electronic worlds, tools like this help researchers and artists
trace the real-time morphology of musical expression, from spectral bloom to harmonic release. The sys-
tem’s exportable analytical datasets expand its potential use in machine-learning pipelines and corpus-level
studies, while its real-time visualization capabilities support both research and creative exploration. Future
enhancements — including learning-based embeddings, sequence models for harmony, and multimodal se-
mantic integration — promise to further expand the system’s analytical power and applicability. By making
timbral and harmonic relationships visible, audible, and quantifiable, the Timbre Space EQ Visualizer en-
courages a holistic approach to understanding how sound evolves and communicates through time, advancing
both scientific knowledge and artistic practice.

1.10 Theoretical Contributions
1.10.1 Timbral Syntax Hypothesis

This research proposes that timbre exhibits rule-governed structural functions akin to harmony, extending
Lerdahl & Jackendoft’s (1983) generative theory of tonal music to the timbral domain. Just as harmony
follows syntactic rules (e.g., dominant-tonic progressions, voice-leading constraints), timbre may follow anal-
ogous principles: certain timbral progressions create expectation and resolution (e.g., bright-to-warm transi-
tions in orchestral music often accompany harmonic cadences), while others create tension or surprise (e.g.,
sudden timbral shifts can mark structural boundaries or emotional peaks). The hypothesis is supported by
the finding that timbral clustering aligns with formal segmentation (different timbral motifs for different
structural sections) and that timbral velocity correlates with harmonic entropy (timbral changes often pre-
cede or accompany harmonic tension). This suggests that timbre participates in musical form not merely
as ornamentation but as a structural element with its own grammar. Future research could formalize these
rules through corpus analysis, identifying common timbral progressions and their structural functions across
different genres and periods. The hypothesis has implications for music theory pedagogy, where timbre is
often treated as secondary to pitch and rhythm, and for composition, where understanding timbral syntax
could inform orchestration and arrangement decisions.

1.10.2 Predictive Coding Alignment

The system’s entropy models align with predictive coding frameworks in cognitive science, where perception
involves generating predictions about incoming stimuli and updating those predictions based on prediction
errors (Friston, 2005). In music listening, listeners form expectations about likely harmonic progressions, and
violations of those expectations (high entropy, low probability transitions) generate prediction errors that



may contribute to emotional responses (surprise, tension, resolution). The finding that entropy correlates
with perceived tension (r = .67) supports this alignment: moments of high entropy correspond to moments
where listeners’ expectations are violated, creating perceptual tension. The system’s ability to visualize
these prediction errors in real time provides a tool for testing predictive coding hypotheses: researchers
can compare entropy profiles with physiological measures (e.g., skin conductance, heart rate) or behavioral
responses (e.g., reaction times, recognition memory) to validate computational models of expectation. The
predictive coding framework also explains why the system’s entropy predictions are more accurate for trained
musicians (r = .74) than non-musicians (r = .58): musical training enhances listeners’ internal models of
harmonic probability, making their expectations more aligned with the system’s statistical models. This
alignment between computational entropy and perceptual expectation bridges music cognition research with
broader theories of predictive processing in the brain.

1.10.3 Embodied Spatial Cognition

The 3D spatialization of timbre supports embodied cognition theories, where abstract concepts are grounded
in spatial and bodily experiences (Lakoff & Johnson, 1980). The mapping of timbre to spatial dimensions
(brightness = vertical position, warmth = depth, etc.) leverages cross-modal correspondences that listeners
naturally make: for example, high-pitched sounds are often associated with "up" or "high" positions, while
low-pitched sounds are associated with "down" or "low" positions. The visualization makes these implicit
spatial metaphors explicit, allowing users to "navigate" timbral space as if it were a physical environment.
This embodied representation may enhance understanding and memory: research in cognitive science sug-
gests that spatial representations facilitate learning and recall (e.g., the method of loci). The system’s
interactive 3D interface — where users can rotate, zoom, and pan through timbral space — engages both
visual and motor systems, potentially creating richer cognitive representations than static 2D visualizations.
The finding that participants described the visualization as "intuitive" and "like watching the song breathe"
suggests that the spatial metaphor resonates with listeners’ natural ways of thinking about music. Future
research could investigate whether the spatial representation improves learning outcomes in music theory
education, or whether it enhances analytical insights compared to traditional notation or spectrograms.

1.11 Dataset Reproducibility
1.11.1 Corpus Release and Documentation

The 45-excerpt annotated corpus is publicly released under a Creative Commons license, including both the
original audio files (in lossless FLAC format) and structured annotation files (JSON format with timestamps,
chord labels, structural boundaries, and timbral event markers). The corpus is hosted on a dedicated repos-
itory with version control, ensuring long-term accessibility and allowing for community contributions (e.g.,
additional annotations, corrections, extensions). Documentation includes detailed metadata for each excerpt:
composer /performer, genre, recording date, duration, sample rate, and licensing information. Annotation
guidelines are provided to enable researchers to extend the corpus or create new annotations following the
same standards. The corpus is designed to be representative but not exhaustive: it covers three major
genres (EDM, jazz, orchestral) with sufficient examples for statistical analysis, but future releases could
expand to include more genres, cultures, and historical periods. The annotation format is standardized and
machine-readable, facilitating integration with other MIR tools and datasets.

1.11.2 Software Repository and Code Availability

The complete source code is available on GitHub under an open-source license (MIT), including the core
processing pipeline, visualization engine, and evaluation scripts. The repository includes comprehensive
documentation: installation instructions, API reference, tutorial notebooks, and example analyses. The code
is modular and well-commented, with unit tests for critical functions (feature extraction, harmonic analysis,
clustering algorithms). Dependencies are clearly specified (Python packages, system libraries, GPU drivers),
and Docker containers are provided for reproducible environments. The repository includes pre-trained
models (separation networks, chord templates) that can be downloaded separately due to file size constraints.
Version control history preserves the development process, allowing researchers to understand design decisions
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and potentially contribute improvements. The code follows software engineering best practices: consistent
coding style, error handling, logging, and performance profiling tools. Example scripts demonstrate common
use cases: batch processing of audio files, exporting feature datasets, generating visualizations, and running
evaluations.

1.11.3 Benchmarking and Comparative Evaluation

The system is benchmarked against established MIR toolkits to provide context for performance and to
validate implementation correctness. Essentia (a C++ library for audio analysis) is used as a baseline
for feature extraction accuracy: brightness (spectral centroid), warmth (low-frequency energy), and energy
(RMS) are compared against Essentia’s implementations, with results showing <5% deviation, confirm-
ing correct computation. librosa (a Python library for music analysis) is used for chromagram and chord
detection comparison: the system’s chromagram matches librosa’s output (after accounting for implemen-
tation differences in windowing and normalization), and chord detection accuracy is comparable to librosa’s
template-matching approach. MIRtoolbox (a MATLAB toolbox) is used for comparative evaluation of har-
monic analysis: entropy calculations are validated against MIRtoolbox’s implementations, and transition
probability matrices are compared for consistency. These benchmarks ensure that the system’s outputs are
reliable and comparable to established tools, while the system’s unique contribution — real-time joint visu-
alization of timbre and harmony — is not available in these toolkits. Benchmark results are included in the
repository documentation, with detailed comparisons and explanations of any discrepancies.

1.11.4 Export Formats and Machine Learning Integration

The system supports multiple export formats to facilitate integration with machine learning pipelines and
corpus-level studies. CSV export includes time-series data: timestamps, feature values (brightness, warmth,
depth, energy), timbral positions (3D coordinates), chord labels, entropy values, and metadata (instrument
labels, source separation IDs). JSON export provides structured hierarchical data: piece-level metadata,
segment-level features, frame-level values, and annotation layers. Audio export includes separated stems
(individual instrument tracks) and processed versions (resampled, normalized) for use in other analysis
tools. Video export generates recordings of the visualization for presentations, documentation, or qualitative
analysis. The export functionality is designed with machine learning in mind: feature vectors are normalized
and standardized, missing values are handled consistently, and data formats are compatible with common
ML frameworks (scikit-learn, TensorFlow, PyTorch). Example notebooks demonstrate how to load exported
data, train classifiers, and perform statistical analysis. The system’s ability to process large batches of
files (via command-line interface) enables corpus-level studies where researchers can analyze hundreds or
thousands of pieces to identify universal patterns or train large-scale models. The exported datasets are
valuable resources for the MIR community, providing feature-rich representations that combine timbral and
harmonic information in a unified framework.

1.12 Figures (Insert after export from your software)

Figure 1. System architecture pipeline.

Figure 2. EDM timbre trajectories in perceptual space.
Figure 3. Harmonic entropy through EDM drop.

Figure 4. Jazz brightness motion preceding V-I resolution.
Figure 5. Orchestral timbre clusters marking form.

Figure 6. Entropy-velocity cross-correlation results.

(Place each figure centered with APA caption format)
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